
Crash Course on Security 

A critical component of any system is its security model. It’s important to identify the different types of users that 

you have, and what each user type should be granted access to see and do inside the system. 

In Onit, the default approach to security is always one of least access possible. That is, unless you configure 

otherwise, the only access that any given user will have is to the Records to which he/she is a Participant of. In 

most cases though, you’ll want to create a more robust and customized security model for your Onit 

implementation. 

To do so, Onit offers multiple, overlapping layers of security. In this tutorial, we’ll cover each possible layer: 

• Participants 

• Admin Roles 

• User Groups 

• Private Access User Group 

• The "Restrict Access" checkbox 

• Security Chains 

• Liquid Conditions 

 Note: As is true for any robust platform, Onit security is an especially advanced topic. This tutorial is 

aimed at technical administrators who have both set up security in other similar systems and are also 

generally familiar with standard Onit concepts (like creating and managing apps and users). 

Overlapping Security Layers 

Before we get too deep into the details, it’s critical to understand that Onit’s security layers are designed to overlap 

with one another. This means that even though a particular layer doesn’t grant the ability to do something, another 

layer may. 

For example, let’s say that you grant a certain security layer to a user named Bob, which grants him the ability to 

do X but not Y. Does this mean that Bob definitely cannot do Y? Not necessarily as Bob may have been granted Y 

via an entirely different security layer. 

Bottom-line: Always take a holistic view of all possible security layers at play. 

If you're interested in what security layers trump others, you can refer to the diagram below: 

Page 1Crash Course on Security



Security Layer: Participants 

This is the most basic layer of security. The easiest way to grant someone access to a transaction is simply to 

ensure that they are one of its Participants. The permissions that they will have on the transaction depend on their 

Role. For example, if their Role is limited to read-only access, Participants added via this Role will have read-only 

access. 

 Important: Participants are a fundamental Onit concept, which you should be aware of before 

continuing with this tutorial. If this is a new concept to you, check out Building Your First App. To learn 

more about adding Participants to transactions, see Adding a Participant from a Field Value and Adding 

Participants from a Decision Table. 

Security Layer: Admin Roles 

This layer of security is primarily aimed at administrators, not regular users. 

Using predefined Admin Roles, you can grant users various degrees of administrative privileges which apply to an 

entire corporation or app. 

There are five different pre-defined Admin Roles available, each of which is described below (each predefined 

Admin Role appears in blue in the following table). 

Page 2Crash Course on Security

https://onit.screenstepslive.com/s/16784/a/683713-building-your-first-app
https://onit.screenstepslive.com/s/16784/a/699200-adding-a-participant-from-a-field-value
https://onit.screenstepslive.com/s/16784/a/688804-adding-participants-from-a-decision-table
https://onit.screenstepslive.com/s/16784/a/688804-adding-participants-from-a-decision-table


System 

Administrator 
App Creator 

List 

Administrator 
API User 

App 

Administrator 

Applies to the 

entire 

corporation or 

to a specific 

app? 

Entire Corporation 

Specific App 

Note: A user 

can be 

assigned this 

Admin Role for 

multiple apps. 

Can manage 

corporation-

level 

administrative 

settings? 

Can manage 

all possible 

corporation-

level settings. 

Cannot manage any 

corporation-level 

settings or view the 

Administration page. 

Can only 

manage a 

corporation’s 

Lists (no other 

corporation-

level settings). 

Cannot manage any 

corporation-level settings or 

view the Administration page. 

Can view, 

modify, and 

delete all 

transactions? 

Yes 
No. Does not grant permission to view, 

modify, or delete any transactions. 

Yes, but only 

via 

authenticated 

API calls. 

(Does not 

grant 

permissions 

 within the 

Onit user 

interface.) 

Yes, for the 

specific app in 

question. 

Can perform 

app-level and 

suite-level 

configuration 

on all apps? 

Note: This 

includes 

creating and 

deleting all 

apps/suites. 

Yes 
No. Does not grant permission to open any app’s 

Wizard or Advanced Designer page. 

 To learn how to assign a user an Admin Role, see the Providing Users with Administrative Roles

section of the Adding and Managing Users tutorial. 

Page 3Crash Course on Security

https://onit.screenstepslive.com/s/16784/a/742560-adding-and-managing-users#providing_users_with_administrative_roles


 Note: A user can be assigned multiple Admin Roles simultaneously. 

 Important: The Admin Roles discussed here are entirely different than the Roles that you create within 

a Wizard. Other than both having the word “role” in their name, these two entities have nothing in 

common. 

Security Layer: User Groups 

The primary purpose of this security layer is to grant users Roles Based Access Control (RBAC) to transactions, even 

if they aren’t transaction Participants. 

For example, let’s say that your Contract App automatically (and conditionally) assigns a few Participants to every 

transaction, such as a Requester, a Legal Approver, and a Finance Approver. Let’s also say, however, that there are 

a static group of administrators that need access to every single transaction. 

In this situation, you could configure Onit to auto-assign each administrator to every transaction (using an Action), 

but that would be cumbersome to set up and manage (especially when admins were hired, fired, and/or 

transferred to different jobs/departments). Instead, it would be much easier to simply tell Onit, “I’ll create a group 

named Admins. Make sure that anyone in that group can see all transactions in my Contracts app -- even if they 

aren’t Participants.” 

To set this up, you’ll need two things: 

• A User Group that you created (like Admins from our example above). This is created at the corporation-level, 

and is then available to all apps. 

• A Role that you created. This is created at the app-level, inside of an app's Wizard. 

Once these are set up, browse to an app’s Advanced Designer page and assign your User Group to your app. 

When you do so, you’ll assign it one of the app’s Roles, which controls what users in that User Group can do on any 

given transaction (e.g., if the Role is limited to read-only access, that permission will filter down to the User Group). 

1. Create a User Group 

Browse to your environment’s Administration page and select Add User Group from the left-hand pane. 

Page 4Crash Course on Security



Provide it with a Name and leave Private Access unselected. 

Select OK. 

2. Add Users to the User Group 

Still on the environment’s Administration page, select User Groups from the left-hand pane. 

Select the User Group that you want to add users to. 

Select Users. 

Using the dropdown at the top of the page, add users to the group. 

Page 5Crash Course on Security



3. Browse to an App and Assign the Group to it 

Lastly, you'll need to assign the group to the App whose Records you want the users in the User Group to have 

access to. Jump over to this App’s Advanced Designer page. 

From the left-hand pane, select the User Groups node. 

From the Name dropdown, select the group that you just created. 

Finally, select one or more Roles. 

Page 6Crash Course on Security



Click Ok to save your changes. 

 Note: If you add one role that is limited to read-only access and another role that has read/write access, 

the group will have read/write access. 

 Note: Users in a group will only see the Tabs that the Role associated with the User Group has been 

assigned to. 

That's all there is to it. The users in your User Group should now have the same permissions to transactions that 

the Role you assigned to it does. 

Security Layer: Private Access User Group 

In the previous section, we covered User Groups in general. In this section, we’ll discuss a special type of User 

Group, which is considered a separate layer of security. 

In all but one situation, User Groups apply to all Records in an App. In other words, by assigning a User Group to 

your App, you’re granting that group access to every Record. The exception to this rule, however, is a User Group 

that has been marked “private access,” which allows you to control security on a Record-by-Record basis. 

Let’s consider an example where this security layer might be helpful. Let’s say that you have a User Group named 

Law Department, which you’ve added to your App. As a result, all members of this group have access to every 

single Record. After setting this up, you realize that this approach might be too generous, because there are a 

small number of Records that are especially sensitive in nature. In this situation, you could use the Private Access 

security layer to limit access to a very small number of users, whom you can trust with sensitive data. 

To set up this security layer, you need to do two things: 

• Create a checkbox named private in your App. 

• Create a User Group in your corporation named Private that has been marked “private access”. 

Page 7Crash Course on Security



Using this set up, when a Record’s Private checkbox is checked by a user, the Record in question will only be 

visible to users that meet at least one of the following conditions: 

• Are members of the User Group that has been marked “private access” 

• Are a Participant on the Record 

 Note: There are multiple ways our security model allows a user to access a Record. If any of these ways 

allow a user to access a Record, that user has access to a Record. If a user has been assigned an Admin 

Role of either System Administrator or App Administrator (for the App in question), they will be able 

to see, modify, and delete all Records, even if they are not in the Private User Group. Likewise, if you've 

added an inherited role to your App (explained in the next section of this tutorial), that will allow users 

who have access to Record in the inherited App to access related Records in your App, regardless of 

whether they're marked private. Always be sure to test your security model exhaustively, using different 

user personas. 

Let’s go through the step-by-step process of configuring the Private Access security layer. 

1. Create and Populate the "Private" User Group 

Browse to your environment’s Administration page and select Add User Group from the left-hand pane. 

Provide it with a Name of Private. 

 Note: The name of this User Group can technically be anything you like. That said, it is a common Onit 

convention to name this User Group Private. 

Additionally, select Private Access. (Don’t forget this step, as it’s critical.) 

Select OK. 

Proceed to add the users to this User Group who you want to have access to transactions marked as private. 

Page 8Crash Course on Security



2. Create a Private Checkbox 

Browse to an app, open its Wizard, and proceed to the Fields screen. 

Add a new Field with a Type of Checkbox. 

Most importantly, give this Field a Name of private. (Be sure to use this exact name.) 

Update your app to save your changes. 

3. Assign "Private" to Your App 

In your App’s Advanced Designer page, from the left-hand pane select the User Groups node. 

Page 9Crash Course on Security



From the Name dropdown, select the “private access” User Group that you just created above. 

Select one or more Roles and click Ok to save your changes. 

You’re done! 

If you check any transaction’s Private checkbox, only its participants and the users in your Private User Group will 

have access to it. 

Page 10Crash Course on Security



The "Restrict Access" checkbox: 

 You might wonder, now that I have set up my User Groups how do I prevent other users from accessing 

and creating Records in Apps where they shouldn't be? The answer is the Restrict Access checkbox. 

The Restrict Access checkbox is the official platform way to prevent users from creating records in an 

App unless the user belongs to an associated User Group. Set up is very simple; Navigate to your App's 

Advanced Designer page and click Settings. Scroll down to the Security heading and check the Restrict 

Access checkbox. When this checkbox is enabled your App will: 

• Not appear on any Homepage associated with a user that does not have access to at least one of the App’s 

Records (via any security layer). 

• Not allow any new Records to be created using the Onit user interface, even by those users that can see 

the App on their Homepage, unless that user is part of a User Group that has the role "Private App 

Initiator". 

Security Layer: Security Chains 

This advanced layer of security enables you to grant/deny access to individual transactions based on whether they 

have access to a related transaction. That probably sounds pretty abstract, so let’s consider this security layer from 

the vantage point of a real-world use-case. 

Imagine that you have a Contracts app and that it contains a Field named Country. Also imagine that your users 

have been assigned a property in Onit which designates which country they work in. Finally, let’s say that you need 

Page 11Crash Course on Security



to grant access to transactions based on which country a user works in. For example, if a particular Contracts 

transaction has a Country Field value of Singapore, Onit should limit access to this transaction to only those users 

who work in Singapore. 

This is a good use-case for the Security Chain security layer. Sticking with the example above, here is how you 

could set this up: 

1. Create an app named Country-Permissions, inside of which you’ll create one transaction per possible country 

(e.g., one for Singapore, another for Mexico, etc.). 

2. Set the Contracts app to be a sibling of the Country-Permissions app. 

 Note: Though its more common to create Security Chains for sibling apps, note that it’s also possible to 

configure them for parent-child app relationships when your business use case calls for that relationship 

type. 

3. Assign your users to be Participants of the Country-Permissions transactions. For instance, if Sarah works in 

Singapore, assign her to be a Participant on the Singapore transaction. 

 Note: It does not matter what Role type your participants are provided here. The Role type that we’ll 

define later (when we wire up the Inherited Role for the Security Chain) will override this Role. 

4. When a new transaction is created in your Contracts app, fire a Find or Create Related Transaction (FCRT) 

Action to create a sibling relationship between it and the appropriate transaction in the Country-Permissions

app. That is, you would configure the FCRT transaction to get the value of the Contract transaction’s Country 

Field and then go find the matching transaction in the Country-Permissions app. Once a match is found, the 

FCRT will relate the two transactions together. 

Below is a screenshot of how your FCRT might be configured: 

Page 12Crash Course on Security



5. Finally, you’ll need to set up something called an Inherited Role within your Contracts app. This will essentially 

tell Onit, “For any given Contracts transaction, find its related Country-Permissions transaction and identify all 

of its Participants. Grant those Participants access to the Contracts transaction.” For example, if Contract 123 

is related to Singapore, then grant access to all Participants on the Singapore transaction. 

Using Inherited Roles requires you to understand several different complex Onit concepts. While it’s outside the 

scope of this tutorial to provide a step-by-step guide to setting all of this up, below is a brief description of how to 

create the Inherited Role for a Security Chain inside of an App (Step 5 from the list above). 

Creating Inherited Roles 

Identify which App contains the Records that you ultimately want to grant users access to. (In our example above, 

that would be the Contracts App.) Browse to this App’s Advanced Designer page. 

From the left-hand pane, select the Inherited Roles node. 

Page 13Crash Course on Security



Click Add and Name your Inherited Role whatever you like. 

From the Role dropdown, select a Role. This controls what the users can do on any given transaction. (E.g., If the 

Role is limited to read-only access, that permission will filter down to the Inherited Role that you are creating). 

For the Source Apps property, select one or more apps. In our example above, we would select the Country-

Permissions app. 

 Advanced Configuration: A quick sidebar… You might be wondering why you might select multiple Apps 

here. In some cases, you’ll want to chain a series of Apps together to set up your Security Chain. This can 

be an especially complex type of configuration, but the easiest way to explain why this may be necessary 

is to expand our real-world example from above. It’s common to have an App whose sole purpose is to 

manage your environment’s users and their properties. This App is usually named User Profiles, and 

normally you’ll add users to be a Participant on their own User Profiles Record (e.g., Bob would be a 

Participant on the User Profiles Record that represented him). In this situation, you don’t want to add 

Bob to be both a Participant on his User Profiles Record and on the Country-Permissions Records that 

identified the country he lives in -- that’s too much work to do for each user. Instead, it’d be much easier 

to simply create a Field inside of the User Profiles App named Country, and then use that Field to 

identify where Bob lives. Using this approach, you could then have Onit create the following sibling 

relationships to pass an Inherited Roles from a User Profiles Record to a Country-Permissions Record 

and onto your Contracts Records: 

• A sibling relationship from Bob’s User Profiles Record to the appropriate Country-Permission Record. 

• A sibling relationship from the Country-Permission Record to the Contracts Record. 

Page 14Crash Course on Security



Gotcha: If you are trying to provide access between a chain of three Apps related with HasMany and 

BelongsTo, you must configure an Inherited Role to the "grandparent" App to the "grandchild" App in 

the chain. 

Again, this is an especially complex Security Chain set up, but it’s important to know that it’s an option. 

For this tutorial, we’ll keep it simple and create a Security Chain between only two Apps (not three). 

For the Inherited Role's Mapping property, we need to tell our app how to find the other app(s) that it’s supposed 

to inherit roles from. In our example -- where we just need to map from the current app to a single sibling app -- 

this is pretty easy. Simply enter the name of the ManyToMany Fields that relate our two apps together (remember 

sibling apps must each have a ManyToMany Field and those Fields must be named the same in both apps.) For 

our example, we named our ManyToMany Fields contracts_countriespermissions, so we’ll enter exactly that in 

our Inherited Role’s Mapping property. 

Note that the task of mapping between apps becomes a little more complex when creating Security Chains 

between more than two apps or between apps with parent-child relationships. Refer to the table below to find the 

appropriate Mapping property syntax for your use case: 

Number 

of Apps 
Parent-Child Sibling 

2 SourceApp_HasMany_FieldName.CurrentApp_BelongsTo_FieldName ManyToMany_FieldName 

3 
SourceApp_HasMany_FieldName.MiddlemanApp_HasMany_Field 

Name.CurrentApp_BelongsTo_FieldName 

SourceApp_ManyToMany_FieldName.

App_ManyToMany_FieldName 

Page 15Crash Course on Security

https://onit.screenstepslive.com/k


 Note: SourceApp refers to the App you want to inherit roles from, MiddlemanApp refers to the App 

Inherited Roles will need to pass through, and CurrentApp refers to the App that you want to provide/

prevent access to. 

Click Ok to save your Inherited Role. 

You’re done setting up an Inherited Role, but remember that there is more configuration that you’ll need to 

perform. That is, relating transactions together and adding Participants to transactions. 

Security Layer: Liquid Conditions 

The final layer of security is the most granular of all, as it allows you to grant/deny access to individual elements in 

the Onit user interface, like Buttons and App Panels. 

When creating a UI element, you can assign it a condition to determine when it should display. As a result, you can 

use this condition to only show the element to the appropriate users, based on user properties. 

Let’s look at an example. Imagine that you have a Contracts app, within which you've created a Button named 

Close Contract. While you do want many people to have access to the Contracts transactions, you only want a 

subset of those users to have access to click the Close Contract button. As a result, you could assign this Button a 

Condition which limits who can see it. 

Setting up this layer of security assumes that you have a way to assign properties to users. As mentioned above, 

Onit provides a clean and simple way to do this, which involves creating a special app (usually named User 

Profiles). Within this app, you’ll create one transaction per user, and then you’ll use Field values to assign 

properties to each user. If necessary, you can also create a separate, related app to track group properties, so that 

you can simply assign users to groups and then assign properties at the group level. 

Though explaining the details of user/group properties is outside the scope of this tutorial, we can cover how to 

leverage this type of set up to conditionally assign security to user interface elements. 

Sticking with the Contracts app example from above, let’s say that we have a checkbox Field at the group-level 

named Can Close Contracts. If so, then we could create a Condition that checks this property for the current user. 

We could then assign this Condition to our Close Contracts Button, which would control whether it is hidden/

displayed for any given user. 

For example, we could create a Condition that uses the following Liquid: 

{% assign my_user = current_user | user_preferences_for_user %}{% if my_user.group.
can_assign_vendors == true %}true{% endif %} 

This Liquid does the following: 

• Creates a new variable named my_user, which stores the user preferences object for the user that is currently 

logged into Onit. 

• Leverages my_user to identify which group the current user belongs to. 

• Checks to see if the group in question has its Can Close Contracts checkbox checked. 

• If the checkbox is checked, a value of true is returned. 

Page 16Crash Course on Security



Other Things to Consider 

In addition to the security layers explained above, the following is a hodgepodge of other security-related Onit 

settings to be aware of: 

• Tabs: Remember that both Roles and Fields are assigned to Tabs within the Wizard. As a result, you can show/

hide Fields by putting them inside of a Tab that is restricted to a certain Role, (although a Field whose Show on 

Dashboard property is selected will still be viewable by anyone who has access to the Record on the 

dashboard). Keep this in mind when configuring any of the security layers mentioned above. 

• Hiding Apps: If you are not using Onit suites, then your users are shown a list of all possible Apps when they 

first log into Onit (on their Homepage). In some situations, you may want to hide Apps from this list. To do so, 

you have the following settings available: 

• Active: Within the Wizard, on the General tab, the Active checkbox determines whether the App appears 

for general users on their Homepage. If you unselect this checkbox, then the App will only be visible to users 

that have been assigned the Admin Role of System Administrator or App Creator. 

• Restrict Access: Within an App’s Advanced Designer page, you can mark the App as having “restricted 

access” by selecting the Settings node from the left-hand pane, clicking the Restrict Access checkbox, and 

clicking OK. When this setting is enabled: 

• It will not appear on any Homepage associated with a user that does not have access to at least one of 

the App’s Records (via any security layer). 

• It will not allow any new Records to be created using the Onit user interface, even by those users that can 

see the App on their Homepage, unless that user is part of a User Group that has the role "Private App 

Initiator". 

In Summary 

And that’s it! All simple stuff, right? 

Page 17Crash Course on Security



Not exactly. Security is a critical component of any system, and one that should be carefully designed, configured, 

tested, and maintained. Hopefully this tutorial has provided a quick and dirty overview of the security tools that 

you have available in Onit. 

To put everything that you’ve learned here into action, we recommend starting small and simple. Creating a test 

user, pick a basic layer of security mentioned above, define your use-case upfront, and then set out to achieve it. 

As you master one security layer, move on to the next one. Before you know it, you’ll have a robust security design 

that accomplishes what you need. Good luck! 

Page 18Crash Course on Security


	Overlapping Security Layers
	Security Layer: Participants
	Security Layer: Admin Roles
	Security Layer: User Groups
	1. Create a User Group
	2. Add Users to the User Group
	3. Browse to an App and Assign the Group to it

	Security Layer: Private Access User Group
	1. Create and Populate the "Private" User Group
	2. Create a Private Checkbox
	3. Assign "Private" to Your App
	You’re done!

	The "Restrict Access" checkbox:
	Security Layer: Security Chains
	Creating Inherited Roles

	Security Layer: Liquid Conditions
	Other Things to Consider
	In Summary

